Carl Friedrich Gauss (1)

Menemukan Hukum Gauss

Johann Carl Friedrich Gauß (juga dieja Gauss) (lahir di Braunschweig, 30 April 1777 – wafat di Göttingen, 23 Februari 1855 pada umur 77 tahun) adalah matematikawan, astronom, dan fisikawan Jerman yang memberikan beragam karya ilmu pengetahuan.

 

Masa kecil
Pada tahun 1777, lahirlah seorang anak jenius di Brunswick, Jerman. Gauss adalah nama anak itu. Orang tua Gauss adalah orang yang tidak berkecukupan. Kakek Gauss adalah petani miskin yang menetap di Brunswick sejak tahun 1740 yang bertahan hidup dengan menjadi tukang kebun. Anak kedua dari kakek ini, Gerhard Diederich, lahir tahun 1744 adalah ayahanda Gauss. Sehari-hari Gerhard bekerja lepas sebagai tukang kebun, menggali salokan dan terkadang menjadi tukang batu. Dorothea Benz, ibunda Gauss, adalah anak tukang perancah batu. Dorothea mempunyai adik laki, Friedrich, yang sangat cerdas dan selalu berupaya meningkatkan taraf hidupnya dengan menjadi pedagang taplak meja hasil tenunan. Friedrich adalah orang yang pertama kali mengenali bakat si genius kecil ini yang muncul sejak umur 3 tahun. Memahami kehebatan otak keponakannya ini, dia mengajarkan logika kepada Gauss, melakukan observasi terhadap obyek-obyek tertentu dan falsafah hidup. Semua dengan cepat mampu dipahami karena kemampuan otak fotografik Gauss.

Perilaku Gerhard yang kasar terhadap Gauss kecil ini selalu dihalangi oleh ibunya, meskipun mereka berdua berupaya keras jangan sampai Gauss kecil “mewarisi” profesi keluarga sebagai tukang kebun. Segala upaya dilakukan oleh Dorothea agar Gauss kecil dapat menggunakan kemampuannya secara optimal. Ketika Gauss berumur 19 tahun, Dorothea bertanya kepada matematikawan teman anaknya, Wolfgang Bolyai, tentang anaknya. Langsung menangis setelah mendengar jawaban Bolyai, “Gauss adalah matematikawan terbesar di Eropa.”

Selama 24 tahun, sebelum meninggal, Dorothea tinggal di rumah Gauss. Ketenaran tidak ada artinya bagi Gauss. Semua dipersembahkan untuk ibunya yang selalu melindunginya sejak kecil. Ketika ibunya buta, Gauss tetap merawat sampai meninggal pada tahun 1839 dalam usia 97 tahun. Peran dari ibu dan pamannya, Friedrich, sangatlah besar bagi Gauss.

Genius kecil
Berbeda dengan Archimedes atau Newton, Gauss menonjol sejak muda usia. Gauss menunjukkan kalibernya sejak umur tiga tahun. Saat ayahnya menerima upah mingguan yang sedang dihitung karena lembur, Gauss kecil ada dibelakangnya. Gerhard menerima upahnya tanpa menghitung, namun Gauss kecil menyebut bahwa perhitungan itu salah. Setelah dihitung ulang ternyata angka yang disebut Gauss kecil adalah yang benar. Genius kecil ini belajar membaca sama misterius dan sama mudahnya seperti dia belajar menjumlah. Sang ayah mengajari abjad, dimana dengan pengetahuan ini, Gauss belajar membaca sendiri. Tidak ada prestasi menonjol dari Gauss sampai usia sepuluh tahun. Setelah memasuki pelajaran aritmatika, bakatnya mulai muncul.

Umur 7 tahun, Carl dikirim ke sekolah lokal, dimana guru merupakan tirani yang hanya tahu melecut dengan cemeti guna mengajar anak. Suatu hari, untuk menjaga agar murid tetap sibuk, diberikan perintah agar semua anak menjumlah angka sebanyak 100 mulai dari 81297 + 91495 + 81693 + … + 100899. Semua angka mempunyai selisih 198. Setiap murid selesai, ditaruhkan batu tulis di atas meja guru; Guru itu, Buttner, menjelaskan hasilnya, Gauss meletakkan batu tulis di atas meja sambil berkata, “Itu salah.” Saat semua teman sekolahnya ke luar kelas, Gauss duduk dengan tangan terlipat, yang dipandang sinis oleh Buttner sambil berpikir, “Murid paling muda ini ternyata anak bodoh.” Guru itu melihat batu tulis Gauss yang tertulis sebuah angka. Setelah sekolah usai, Buttner akhirnya menyebutkan bahwa jawaban Gauss yang benar.

Terkejut dengan peristiwa ini, Buttner merelakan uang gajinya untuk membeli buku teks terbaik tentang aritmatika dan memberikan kepada Gauss sambil mengatakan, “Saya tidak dapat mengajar anak ini lagi.” Tidak sanggup lagi mengajari dan mengalihkan tanggung jawab ke asisten muda, Johann Martin Bartels [1969 – 1836]. Persahabatan remaja usia 17 tahun dengan anak 10 tahun ini berlangsung selama hidup Bartels. Mereka belajar bersama, saling membantu dan menulis pembuktian-pembuktian dalam bidang aljabar dan analisis dasar yang ada dalam semua buku teks.
Sedangkan Buttner, kemudian, berbicara kepada ayah Gauss untuk pendidikan lanjut anak genius ini. Mengetahui kenyataan ini, Gerhard mengubah rencana, dari keinginan semula menjadikan Gauss sebagai pedagang atau pekerja, berubah menjadi dokter atau pengacara bahkan profesor. Ada legenda yang menyatakan bahwa begitu sampai di rumah, setelah mendengar berita itu, Gerhard langsung merusak alat tenun yang biasa digunakan Gauss untuk membantu Friedrich menenum agar anak itu tidak dapat menggunakan lagi.

Mulai saat itu, Gauss menghabiskan banyak waktu untuk belajar. Saat malam tiba, dia berhenti belajar karena gelap dan tidur, karena tidak mampu membeli lilin untuk penerangan di malam hari. Kendala ini akhirnya dapat diatasi oleh Gauss dengan membuat lampu dari daun turnip yang diisi dengan minyak diberi sumbu terbuat dari kain perca bekas.

Mendapat “bea siswa”
Kejeniusan Gauss, laksana dongeng ini, terdengar oleh bangsawan Brunswick (Duke of Brunswick) bernama Ferdinand. Terkesima dengan berita itu, langsung mengirim pelayan agar mengundang Gaussl untuk tinggal di purinya. Pelayan yang kebingungan mencari alamat Gauss ini bertanya kepada saudara tiri Carl, Georg, bahwa Gauss dicari oleh Ferdinand. Georg protes bahwa barangkali salah orang, namun setelah dijelaskan akhirnya Georg mengantar pelayan itu menemui Gauss. Hubungan antara bangsawan ini dengan Gauss bertahan sampai bangsawan itu meninggal. Beberapa tahun kemudian, Gauss menjadi matematikawan terkenal di dunia, Georg sering mengatakan bahwa “Saya menjadi profesor; tawaran pertama datang kepada saya tapi saya tidak mau tinggal di puri.” Georg menjadi penjahit, setelah menjadi prajurit, dan pensiun menjadi tukang kebun.

Umur 12 tahun, Gauss sudah berani mempertanyakan dasar-dasar geometri Euclidian. Umur 15 tahun, Gauss sudah belajar di College, semua biaya ditanggung oleh Ferdinand, dengan mengambil jurusan bahasa kuno dan bahasa modern serta matematika – Gerhard menyebut dengan bidang yang tidak membumi. Umur 16 tahun mulai menggagas geometri selain Euclid. Setahun berikutnya mencari “lubang-lubang” pembuktian teori bilangan yang memuaskan pada pendahulunya, namun dianggap hanya karya setengah jalan, sebelum memasuki bidang favorit, aritmatika. Tiga tahun kemudian, Gauss masuk universitas Gottingen, dan belum dapat memutuskan jurusan matematika atau jurusan bahasa yang akan dipilih. Keputusan memilih bidang matematika terjadi pada tanggal 30 Meret 1796, dimana pada hari itu Gauss menemukan cara membuat poligon 17 sisi dengan menggunakan kompas dan penggaris. Cara menggunakan kompas dan penggaris dimulai sejak jaman Archimedes ini, namun cara menggambar poligon ini baru ditemukan oleh Gauss. Penemuan ini dianggap sebagai salah satu penemuan terbesar dari Gauss. Keputusan besar dan benar ini kemudian diikuti dengan janjinya untuk membuat catatan harian matematika yang diisi dengan ide-ide atau problem-problem yang melintas di kepala setiap hari. Dalam buku itu pula tertulis bahwa kemungkinan adanya geometri non-Euclidian; membuat perubahan besar dalam aritmatika; merombak teori bilangan; proses menemukan grafik dari bilangan kompleks dan membuktikan theorema dasar aljabar. Gauss remaja, seperti halnya Newton, adalah masa penuh ide dan sangat kreatif.

Karya pertama setelah lulus
Di universitas Gottingen, karya Gauss dapat diperbandingkan dengan karya para matematikawan lain dan hasilnya memang mencolok. Semakin dia membandingkan akhirnya dia menyadari bahwa dia adalah seorang matematikawan besar. Gauss selalu menyimpan semua penemuannya dan menyesal bahwa tidak seorangpun dapat berdiskusi tentang teori-teori yang menarik hatinya. Salah seorang teman baiknya di universitas adalah Wolfgang Bolyai, bangsawan Hongaria yang kelak anak lakinya [Janos Bolyai] menemukan geometri non-Euclidian. Bolyai sendiri mengagumi kejeniusan Gauss dan pernah mengunjungi rumah Gauss di Brunswick setelah ditanya oleh ibu Gauss, dengan jawaban bahwa, “Gauss adalah matematikawan terkemuka di Eropa.”
Umur 21 tahun, Gauss meninggalkan universitas dengan ucapan perpisahan dari Bolyai, ”Dituntun malaikat yang memberinya ketenaran dan kejayaan,” dan kembali ke Brunswick. Gauss tidak suka dengan ayahnya yang dianggapnya ingin mendominasi, kasar dan berkelakuan buruk, sehingga tinggal di rumah lain. Tidak lama setelah itu menulis surat kepada Bolyai yang menyebutkan bahwa saya tidak punya uang lagi. Mendengar keluhan ini Ferdinand mengirim uang dan menjamin bahwa Gauss jangan pernah berpikir tentang uang lagi. Beberapa bulan di rumah, Gauss pulang pergi ke Helmstedt, dimana dia belajar di perpustakaan. Perpustakaan milik universitas Helmstedt dikelola oleh matematikawan sekaligus pusatakawan, Johann Friedrich Pfaff [1765 – 8125], adalah paling lengkap untuk topik-topik matematika. Antar keduanya kemudian terjalin persahabatan. Pfaff, yang dikagumi oleh Gauss, kemudian disebut sebagai matematikawan paling terkenal di Jerman bukan karena keahlian matematika, tapi untuk kesederhanaan dan sikap terbuka.
Tidak lama makalah teori bilangan yang sudah pernah dirintisnya di Gottingen diterbitkan dengan judul Disquisitiones Arithmeticae, setelah tertunda selama tiga tahun akhirnya dicetak dan diterbitkan pada tahun 1801.

Disertasi
Nama Gauss mulai terkenal sehingga merencanakan menggunakan bahan-bahan dalam buku itu untuk disertasi doktoral, namun pihak penerbit menolak. Dicari judul lain sebelum akhirnya didapat judul panjang, Demonstratio nova theorematis omnem functionem algebraicam rationalem integram unius variabilis in factores reales primi vel secundi gradus revolvi posse yang terbit lebih awal, tahun 1799. Isi tesis doktoral adalah membuktikan theorema dasar aljabar – membuktikan bahwa polinomial pangkat n (kuadrat adalah pangkat 2 dan kubik adalah pangkat 3, quartik adalah pangkat 4 dan seterusnya) mempunyai (hasil) akar pangkat n juga. Hal tersebut baru valid (sahih) apabila perlakuan terhadap bilangan imajiner sama seperti bilangan riil.

Untuk bilangan riil:
x4 + 2x³ + 9 = 0 akan mempunyai 4 hasil (bilangan) akar
x³ + x² + 2x + 4 = 0 akan mempunyai 3 hasil (bilangan) akar.
Untuk bilangan imajiner:
x² + 4 = 0 tidak dapat diselesaikan apabila bilangan riil yang dipakai.

Hasil yang diperoleh adalah x = ± √-4, atau x = ± 2√-1. Seperti dinyatakan oleh Euler bahwa ekspresi √- 1 dan √-2 tidak dimungkinkan atau merupakan bilangan-bilangan imajiner, karena akar bilangan adalah negatif; sesuatu tidak ada apa-apa (nothing) karena bukan bilangan dan bukan pula bilangan yang lebih besar dari sesuatu tidak ada (nothing).* Gauss menyatakan bahwa bilangan negatif juga termasuk dalam sistim bilangan.
Tidak lama setelah terbitnya Disquisitiones Arithmeticae, Gauss menjadi pengajar dan menulis makalah singkat berjudul The Metaphysics of Mathematics, yang disebut sebagai salah satu uraian singkat dan jelas yang pernah ditulis tentang dasar-dasar matematika. Penyederhanaan ini dimaksudkan pada keyakinan bahwa akan memudahkan mahasiswa belajar matematika.

Halaman :  (1)  (2)

____________________________________________________________________________________________

  1. Mei 17, 2014 pukul 12:22 pm

    I blog often and I seriously appreciate your information. Your article has really peaked my interest.
    I’m going to take a note of your blog and keep checking for new details about once per week.
    I subscribed to your RSS feed as well.

    – cliquez ici
    – cliquez ici
    – cliquez ici
    – cliquez ici
    – cliquez ici
    – cliquez ici

  2. Maret 21, 2013 pukul 9:53 pm

    Today, I went to the beach front with my kids. I found a
    sea shell and gave it to my 4 year old daughter and said “You can hear the ocean if you put this to your ear.” She placed
    the shell to her ear and screamed. There was a hermit crab
    inside and it pinched her ear. She never wants to go back!
    LoL I know this is totally off topic but I had to tell someone!

  1. No trackbacks yet.

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout / Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout / Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout / Ubah )

Foto Google+

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s

%d blogger menyukai ini: